FNT

simplify complexity

Use, enrich, and configure events
for integration scenarios

Filter and enrich base events

Send and receive enriched events to and
from external systems

Implement customer-specific rules for
FNT Command

FNT EventEngine

A powerful integration tool for complete event processing

As part of the FNT IntegrationCenter, the FNT Event-
Engine specializes in managing all types of event-based FUNCTIONS
interfaces. It can be used to monitor events from FNT
Command to trigger specific actions either within FNT
Command or an external application. These events can
be filtered and enriched with additional data from FNT
Command. The enriched events can then be sent to
other external systems or reconciled with data from
FNT Command using the FNT ReconEngine.

B Receive FNT Command Core events and events
from other sources

Filter incoming events
Route incoming events

Process incoming events with custom logic

Enrich incoming events with FNT Command

EVENT-DRIVEN USE CASES Core data

B Forward incoming events
Event-Driven Updates of the FNT Command
Core System

When an external system sends an event, the data is
extracted using Groovy scripts. The required information
is forwarded to the FNT ReconEngine, which either auto-
matically aligns the data or generates a delta report based
on predefined rules. Users can then approve changes in the
delta report and view the updated data directly in the GUI.

- Mavigator x Object Management

File Edit Zones Objects View Extras Help
= I S A s & O oo W F O L B O % O 0
Q search & Zones Campus: Campus_TKL_001 I Room: Room 01 x
Room: Room 01 v Documentation view g
v
@ Berlin Mobile Network [4G and 5 Sites] v Zaneicantent
5 Ellwangen [ELL] (0) B Ellwangen / Rohlinger Strasse 11 / Building 02 1st Floor / Room 01 EEy A &
“ Dr-Adolf-Schneier-Strale 20 [DAS] (0) @ ;"3; Position | Visible-ID Object type
“ Franz-Rueff-Strake 11 [FRS] (0) 7] » ‘:# ELL-ROE11-B02-01-01-CN4200-1001 Ciena, CN-4200 - 4200 ActivSpan Series 19" / 4 HU (CN-4200)

“% Rohlinger Strasse 11 [ROE11] (0) ~
= Building 01 1st Floor [B01-02] (0)
= Building 01 2nd Floor [B01-02] (0)
= Building 01 Basement [B01-BA] (0)

= Building 01 Ground Floor [BO1-GF] (0)

<

= Building 02 1st Floor [B02-01] (0)

=3 Room 01 [01] (1)

=3 Room 02 [02] (0)
=3 Room 03 [03] (0)
o Building 02 Basement [B02-BA] (0)

= Building 02 Ground Floor [B02-GF] (0)

Figure 1: Example of Automatic Generation of the Device VisibleID with the EventEngine

Data Enrichment of Events

When an external system sends an event, such as an
alarm notification from a monitoring tool, the datais
extracted using Groovy scripts and additional logic, such
as filters and mappings, is applied. Supplementary infor-

mation, such as location address, cable overview, affected
customers, and protection status, can be added from FNT
Command. The enriched data can then be forwarded to a
ticketing system.

s GenerateDeviceVisibleId {

LoggerFactory.getlLogger(GenerateDeviceVisiblelId.class)

c Logger LOG =
ZoneService zoneService = ApplicationContextProvider.getBean(ZoneService.class)

= CampusRepository campusRepo = ApplicationContextProvider.getBean(CampusRepository.class)
BuildingRepository buildingRepo = ApplicationContextProvider.getBean(BuildingRepository.class)
FloorRepository floorRepo = ApplicationContextProvider.getBean(FloorRepository.class)

c RoomRepository roomRepo = ApplicationContextProvider.getBean(RoomRepository.class)

c EventMessageBody apply(Exchange exchange) {

EventMessageBody event = exchange.getMessage().getMandatoryBody(EventMessageBody.class
LOG.info("{}", event
IntegrationObjectMessageBody integrationObject = event.getIntegrationObjects

integrationObject.getObject(DeviceBase.class

.get(@
DeviceBase dto =

List<Zone> zonelList = zoneService.findZoneByChildElement(dto.getElid()
LOG.info("Found {} zones for device: {}", zonelList.size(), zonelist
if (zonelList.size() != 1

return event

Zone zone = zonelList.get(@

Figure 1: Example Groovy Script

User-Specific Implementation of Rules

When a user creates an object in FNT Command, such as
a new service, the system generates a basic event. Filters
can be applied using Groovy scripts, allowing the process
to request additional data from FNT Command when
needed. User-specific logic and rules can also be imple-
mented via Groovy scripts (see Figure 2), and the result-
ing data is saved back into FNT Command (see Figure 1).

User-Specific, Event-Driven Updates

When a user places a card on a shelf, a basic event is gen-
erated in FNT Command. Groovy scripts can be used to
apply filters and logic to enrich the event with additional
data from FNT Command. Based on predefined routing
rules, the event is forwarded to the specified system.

KEY BENEFITS OF FNT EventEngine

Define Custom Logic: Customers and partners
can define their own logic and forward it to
the relevant areas within the EventEngine.

Easy Interaction with Data Stored in FNT
Command: Adapters make integration with
the FNT Command platform possible, enabling
seamless interaction with data stored in
FNT Command and the ReconEngine. Events
triggered by Command can be received and
processed. The Command BGE component
allows for querying and editing data, as well
as access to the ReconEngine NMS cache and
synchronization tasks.

Efficient Event Management: Manages all
event-based interfaces to handle the data
and event flow between FNT Command and
external systems seamlessly.

FNT Software GmbH, IT-Campus 2-4, 73479 Ellwangen, Germany, Phone +49 7961 9039-0, info@fntsoftware.com

Interface Customization (Wrapper)

When an external API call is made, such as a query for
data in an externally defined format, this call is trans-
formed into one or more FNT Command API calls. The
requested data is retrieved from FNT Command, trans-
formed back into the externally defined format, and then
sent as a respanse to the external system.

Real-Time Data Updates: Enables synchro-
nization and updates to data across multiple
systems in near real-time, which is useful in
scenarios where a daily full data sync is not
sufficient.

Scalability for Complex Use Cases: Ideal for
scenarios where data needs to be dynamically
provided or updated across multiple systems,
making it suitable for more complex use cases
that go beyond traditional batch updates.

fntsoftware.com

